

Inspection of Exterior Elevated Elements (E3)

Hoban Property Management

Property Address:

434 S Mollison Ave
"EL TESORO APARTMENTS"
El Cajon CA 92020

San Diego Home Inspection, Inc.

Joseph Romeo General Contractor Lic. #1113143
10409 Crosscreek Terrace
San Diego, CA 92131
(619) 752-4399
joe@sandieghomeinspection.com

Table of Contents

<u>Cover Page</u>	1
<u>Table of Contents</u>	2
<u>Intro Page</u>	3
<u>1 Property Information</u>	6
<u>2 Inspection Methodology</u>	7
<u>3 (E3) Type Identified: Elevated Walkway</u>	10
<u>4 (E3) Type Identified: Private Balcony</u>	12
<u>5 (E3) Type Identified: Stair Landing</u>	13
<u>6 Wall Cladding</u>	15
<u>7 Wood Destroying Organisms</u>	16
<u>8 Railings</u>	17
<u>9 Site Photos/ Overview of Inspection Methods</u>	18
<u>10 Vertical measurements; to be used for future monitoring</u>	26
<u>11 Report Summary</u>	28
<u>12 Qualifications of Inspector and Report Summary</u>	31

Date: 10/21/2025	Time: 10:00 AM	Report ID: 20251021-434-S-Mollison-Ave
Property: 434 S Mollison Ave "EL TESORO APARTMENTS" El Cajon CA 92020	Customer: Hoban Property Management	

Senate Bill 721 (SB 721) was signed into law in 2018 following a catastrophic structural failure in Berkeley, California. A tragic balcony collapse resulted in multiple fatalities and serious injuries among college students. Investigators determined that dry rot in the wood-framed balcony joists caused the structural members to fail without warning.

In response, SB 721 introduced a new classification of building components known as [Exterior Elevated Elements \(E3's\)](#) . These are defined as wooden load-bearing components and their associated waterproofing systems that are exposed to the elements. The State now considers all E3s to carry an elevated risk of collapse and a potential threat to public safety.

As a result, owners of apartment buildings with three or more units are required to complete a specialized third-party inspection of all E3's by January 1, 2026. After the initial inspection, subsequent inspections must be conducted every six years.

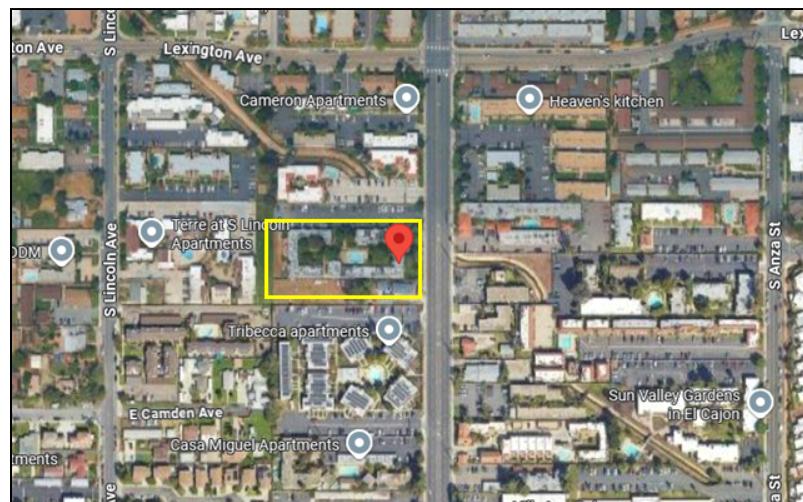
An E3 may include decks, balconies, stairways, walkways, or stair landings that are exposed to the exterior, constructed with wood framing or rely on wood for structural support, and elevated more than six feet above ground level.

Inspections must be performed by a qualified professional. This includes a licensed architect, a licensed civil or structural engineer, a licensed general contractor with at least five years of experience in multi-story wood-framed construction, or a certified building inspector/building official recognized by the State. The inspection must include a direct visual assessment, or an equivalent method, of both the structural components and the waterproofing systems associated with the E3s.

By law, the inspection report must address specific items and be delivered to the property owner within 45 days of the inspection. If deficiencies are identified, the statute requires owners to apply for permits within 120 days and complete non-emergency repairs within 120 days of permit approval. In cases of hazardous or emergency

conditions, owners must immediately restrict occupant access and initiate emergency repairs.

All repairs must comply with the inspector's recommendations, manufacturer specifications, the California Building Standards Code, and local jurisdiction requirements. Failure to comply may result in civil penalties of \$100-\$500 per day and potential building safety liens recorded by the local enforcement agency.


We recommend that the building owner and/or property manager obtain a full copy of California H&S Code §17973 and become familiar with its inspection cycles, repair timelines, and enforcement procedures to ensure compliance.

1. Property Information

The subject property is a two-story, approximately 39-unit apartment building complex located within the City of El Cajon (San Diego County), California. The buildings are constructed on slab-on-grade foundations and are wood-framed, with a primary exterior finish of traditional three-coat stucco, consistent with standard multi-family construction practices in the region. A brief perimeter inspection was conducted, during which all sides of the building exterior were viewed. Based on this assessment, three types of exterior elevated elements (E3) were identified on site: elevated walkways, private balconies and stair landings.

Detailed descriptions of the walkways follow in subsequent sections.

Overhead view/ location of subject property in El Cajon.

2. Inspection Methodology

On October 21st, 2025, we conducted a site walk to count and document the number and types of Exterior Elevated Elements (E3) present. At selected locations, we accessed the elements via stairs or ladder and then physically walked on them to perform a detailed inspection. During this phase, we observed the condition of the walking surface and traffic coating, assessed the wall cladding, and evaluated the sturdiness of the railings. Thermal imaging/infrared cameras were used to identify potential signs of moisture intrusion. Water was also sprayed on the walking surfaces to assess drainage performance and identify any areas of ponding.

After completing the initial surface observations, we continued the inspection from the underside (soffit) of the elements. These areas were again surveyed using thermal imaging equipment. In the absence of building plans, we made educated assumptions regarding the location of concealed framing members. Based on these assumptions, we marked the soffit with a layout indicating where holes would be drilled. Drilling into the soffit allowed us to view, measure, and test the condition of the framing and evaluate the performance of the waterproofing system.

To assess the structural integrity of the plywood decking and joists, we performed impact testing using a blunted steel probe resembling an elongated screwdriver. The "rebound test" evaluates the wood's resistance to impact; solid wood will typically rebound, while soft or spongy wood often indicates damage due to moisture, termite activity, or fungal growth. During this same phase, we also measured the depth of the joists.

Following impact testing, we inserted an articulating borescope (a miniature camera) through the drilled holes to inspect within the joist bays. This allowed visual confirmation of the condition of concealed components, including the plywood decking, joists, blocking, connecting hardware, and fasteners. Damaged wood typically appeared discolored or irregular, in contrast to the uniform appearance of intact material. If anomalies suggesting moisture intrusion were observed, we used a handheld moisture meter to determine the moisture content of the plywood. One moisture reading was recorded to establish a baseline condition for future comparison.

At exposed wood locations, we performed additional probing using a similar screwdriver-like tool mounted to a telescopic pole. This method allows us to test elevated areas that are otherwise out of

reach and helps identify compromised wood due to moisture intrusion, termite activity, or fungal decay.

Additionally, we took an accurate vertical measurement from a fixed ground reference point to a specific area on the soffit, which will serve as another baseline for monitoring future changes. All drilled holes were sealed and repaired upon completion of the inspection.

The reader will notice that this report includes numerous **photographs** and visual references throughout. These images are not just for illustration—they are an integral part of our documentation process. In fact, California Health & Safety Code § 17973(c) encourages photographic or graphic documentation of findings as part of the inspection report. Our format reflects this expectation, ensuring that observations of concealed framing, waterproofing systems, and surface conditions are clearly supported by visual evidence, and each step of the process is documented to help the end user follow the process.

Photographs were taken in accordance with the statute to document the condition of inspected E3s. Whenever possible, we use photos captured on site during the day of inspection. In rare cases where images are unavailable due to corruption, omission, or other limitations, we reserve the right to substitute archived or representative photographs to support the findings.

Illustration of concealed floor framing components provided as a courtesy

3. (E3) Type Identified: Elevated Walkway

This property has E3s in the form of elevated walkways.

The **structure** consists of plywood decking, likely $\frac{3}{4}$ " thick, based on visible edge profiles and standard framing practices. The decking is supported by cantilevered 2x8 nominal lumber joists, observed through soffit access using a borescope camera. Joists are estimated to be spaced approximately 16 inches on center, though exact spacing could not be confirmed due to limited visibility. At the cantilevered termination, a full-depth rim joist assembly is present. Based on visible thickness and framing convention, the rim is likely doubled-up (two 2x8 members) to provide enhanced lateral restraint and edge stability. Some framing connectors and nails were visible and appear consistent with typical construction methods for this type of assembly.

The **waterproofing** membrane is described as a concealed system installed beneath a lightweight concrete topping. This system is designed to provide a continuous moisture barrier while supporting pedestrian traffic. Integrated flashings are present at perimeter edges, wall interfaces, and transitions to help prevent water intrusion. Most flashings were not visible during inspection. The surface exhibits a functional slope, directing water toward the lower edge to promote drainage or at least minimize areas of ponding.

We randomly selected and inspected 50 of the 193 lineal feet of walkways on premises, representing a 26% sampling. This exceeds the sample size required by the statute.

No adverse conditions were observed with the structural or waterproofing components examined.h

The walkways serving units 28 & 29 and 37 thru 39 were inspected and deemed to be in good condition/ no defects

The concrete walking surfaces serving units 28 & 29 and 37 thru 39 were inspected and deemed to be in good condition/ no defects

4. (E3) Type Identified: Private Balcony

This property includes exterior elevated elements (E3s) in the form of private balconies accessible from individual residential units.

The **structure** includes cantilevered framing with concealed 2x8 nominal lumber joists extending from the main building envelope. A doubler joist is present at the lower edge of the balcony to reinforce load-bearing conditions and support railing components. The railing assembly consists of wood framing with plywood infill panels. These components are mechanically fastened and visually consistent with the surrounding architectural finishes.

The **waterproofing** system consists of a pedestrian-rated lightweight concrete topping, which serves as both a walking surface and a protective layer over the underlying waterproof membrane. The surface exhibits a functional slope, directing water toward the lower edge to promote drainage or at least minimize areas of ponding. No scupper drains were observed; water appears to shed freely off the balcony edges.

We inspected 2 of the 13 balconies on premises, representing a 15% sampling. This meets the sample size required by the statute.

No adverse conditions were observed with the structural, waterproofing, or railing components examined.

The private balconies serving units 20 & 39 were inspected and deemed to be in good condition/ no defects

The concrete walking surfaces serving units 20 & 39 were inspected and deemed to be in good condition/ no defects

5. (E3) Type Identified: Stair Landing

This property includes exterior elevated elements (E3s) in the form of elevated stair landings located at the upper level of exterior staircases.

The **structure** consists of plywood decking, likely $\frac{3}{4}$ " thick, based on visible edge profiles and standard framing practices. Each landing is mechanically fastened to the adjacent cantilevered walkway on one side, while the opposite side is supported by two 2" diameter steel posts. Joists are estimated to be spaced approximately 16 inches on center, though exact spacing could not be confirmed due to limited visibility. At the cantilevered termination, a full-depth rim joist assembly is present. Based on visible thickness and framing convention, the rim is likely doubled-up (two 2x8 members) to provide enhanced lateral restraint and edge stability. Some framing connectors and nails were visible and appear consistent with typical construction methods for this type of assembly.

The **waterproofing** system consists of a concealed membrane installed beneath a pedestrian-rated lightweight concrete topping. This system is designed to provide a continuous moisture barrier while supporting pedestrian traffic. The surface is adequately sloped, directing water toward the lower edge to promote drainage and prevent ponding.

We inspected 2 of the 9 qualifying landings on premises, representing a 22% sampling. This meets the sample size required by the statute.

No adverse conditions were observed with the structural or waterproofing components examined.

The landings serving units 20 & 33 were inspected and deemed to be in good condition/ no defects

The concrete walking surfaces serving serving units 20 & 33 landings were inspected and deemed to be in good condition/ no defects

6. Wall Cladding

Stucco wall cladding is present throughout the building exterior. It is applied in three coats—scratch, brown, and color—over metal lath and building paper, consistent with standard multi-family construction practices in the region. Although the wall cladding is not classified as an exterior elevated element (E3), it functions as a critical component of the building's overall waterproofing system. When properly installed and maintained, the stucco assembly helps protect both the building exterior and the E3s by shielding structural members and interface points from moisture intrusion and environmental exposure.

Even minor cracking in stucco can compromise its protective function. Hairline fissures may allow water to penetrate the system, especially during wind-driven rain events or prolonged exposure. Over time, this moisture can migrate into the framing cavity, leading to deterioration of wood members, corrosion of fasteners, and potential mold development. For this reason, the condition of the stucco finish is considered relevant to the performance of adjacent E3 assemblies.

The stucco observed at inspected areas was in normal and acceptable condition. No significant cracking, delamination, or separation was noted during the visual survey. Surface texture and finish appeared consistent with original construction, and no signs of water staining or efflorescence were present at the time of inspection .

Stucco wall cladding was inspected and deemed to be in good condition/ no defects

7. Wood Destroying Organisms

Wood-destroying organisms are biological agents that compromise the structural integrity of wood-based building components. These include insects such as termites and wood-boring beetles, as well as fungal decay mechanisms like dry rot and wet rot. Left untreated, these organisms can lead to progressive deterioration of framing members, sheathing, and other load-bearing elements, posing serious safety risks over time.

California Health & Safety Code § 17973 mandates that inspections of exterior elevated elements (E3s) include an evaluation for hazardous conditions resulting from fungus, deterioration, decay, or improper alteration. This requirement ensures that any biological or environmental threat to the structural soundness of E3s is identified and addressed proactively.

No wood destroying organisms were observed at the E3's we inspected.

Generic illustration - used for illustrative purposes only/ no defects noted

8. Railings

Steel guardrails were present at the E3 elevated elements inspected.

Each railing was visually assessed for signs of corrosion, looseness, or structural compromise. As part of the evaluation, we performed a manual push and pull test at mid-span and post connections, simulating a point load of approximately 200 pounds of force, consistent with expected occupant interaction and code-based loading scenarios.

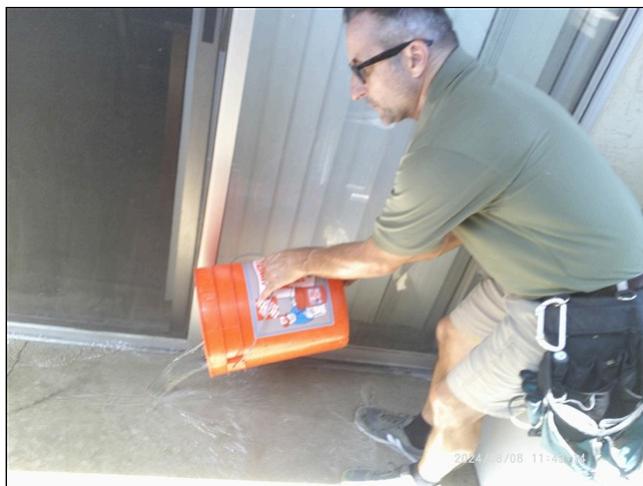
The railings exhibited little to no measurable deflection during testing and appeared to be securely anchored at both post bases and horizontal members. No signs of looseness, weld failure, or excessive movement were observed.

Based on these findings, the railings are considered to be performing adequately at the time of inspection.

The railings were inspected and deemed to be in functional condition/ no defects

9. Site Photos/ Overview of Inspection Methods

9.0 Railings


We performed a push & pull test of the railings to verify their performance.

9.0 Inspector testing the performance of the railings

9.1 Drainage

We placed water on the inspected element to observe the performance of the drainage and waterproofing. Unless noted otherwise the drainage and waterproofing were deemed functional.

9.1 Inspector placing water on the walking surface to observe waterproofing and drainage performance.

9.2 Infrared/ Thermal Imaging

Our FLIR C5 thermal imaging/infrared camera was used to scan for anomalous conditions at accessible portions of the exterior elevated elements. This non-invasive diagnostic tool allows for the detection of temperature differentials that may indicate concealed moisture intrusion or active leaks within the structural or waterproofing assemblies. Infrared scanning was conducted at soffits, wall interfaces, and deck surfaces where access permitted, with particular attention given to areas near transitions, penetrations, and drainage paths.

Unless noted otherwise in the individual element descriptions, no anomalous thermal patterns were observed. Surface temperatures appeared consistent with expected ambient conditions, and no signs of active moisture intrusion or thermal bridging were detected at the time of inspection.

9.2 Inspector using infrared camera (IR) to scan for anomalies.

9.3 Layout

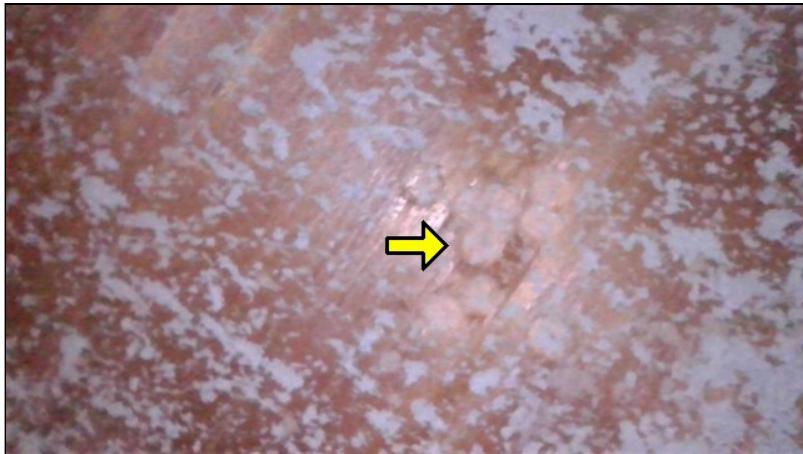
After viewing the walking surface above, we made a thoughtful layout, marking where our holes would be drilled.

9.3 Measuring for proper location of holes to be drilled

9.4 Access Holes Created in Soffit

Holes were drilled through the stucco soffit, allowing access to the decking, joists and other structural members.

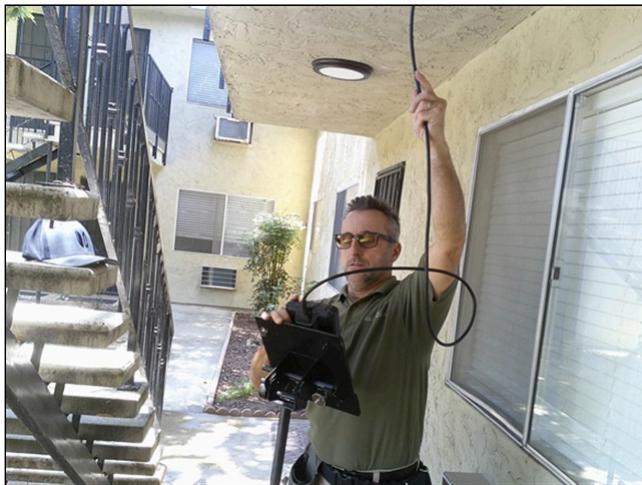
9.4 Holes being drilled to allow for impact and borescope testing


9.5 Impact Testing

We performed an impact test against the decking and joists at previously concealed areas to assess the condition of the structural framing. This test involves applying controlled force to accessible framing members using a blunt instrument to evaluate material response and detect signs of deterioration such as dry rot, delamination, or compromised fastener connections. The impact test was conducted at soffit openings and other accessible points where framing was exposed or partially visible.

At this stage, we also measured the depth of the joists using a calibrated probe and visual reference against known material dimensions. Joist depth was confirmed to be nominal 2x8 lumber, consistent with standard cantilever framing practices for elevated walkways in multi-family construction. No abnormal deflection, hollow response, or structural irregularities were noted during testing.

9.5 Inspector performed impact testing on the wood-framed components to assess material integrity and detect signs of deterioration. This involved applying controlled force to exposed joists and decking using a blunt instrument, allowing for evaluation of surface response, fastener stability, and potential internal decay. The procedure helps identify dry rot, delamination, or compromised connections without invasive removal.



9.5 Normal-looking marks created during impact testing were observed through the borescope camera. These marks appeared as shallow indentations and surface scuffs consistent with controlled probing of the decking and joists. The impressions were uniform in character and did not exhibit signs of excessive force, splintering, or material degradation. Their appearance aligns with expected results from standard impact testing procedures and did not raise concern for structural compromise or abnormal response. No discoloration, fungal growth, or irregular surface texture was noted in the surrounding wood.

9.6 Direct Visual Inspection of Framing

We inserted a borescope/miniature camera to view previously concealed areas within the soffit cavities and framing intersections. This tool allows for internal visual access without destructive removal, enabling us to inspect the condition of structural members that are otherwise hidden from view. The camera was used to look for signs of staining, moisture intrusion, wood decay, or other alterations that could indicate compromised performance or prior repair activity.

In this case, the wood framing observed through the borescope appeared normal and consistent with original construction, which often includes incidental spider webs, overspray, and other minor debris typical of enclosed framing cavities. No visible staining, rot, delamination, or irregular modifications were noted. Fasteners and framing connectors appeared intact, and the wood surfaces showed no signs of active deterioration or distress.

9.6 Inspector used a borescope camera to view concealed framing and waterproofing membranes within soffit cavities and transition areas. This tool allows internal visual access without destructive removal, enabling inspection of joists, decking, and moisture barriers. Focus was placed on identifying staining, deterioration, or membrane failure. Observed conditions appeared consistent with original construction. No signs of distress, staining, or abnormal modifications were noted.

9.6 Normal-looking wood (with typical construction overspray) was observed through the borescope camera during inspection of concealed framing areas. The surfaces appeared intact, with no visible signs of major staining, rot, delamination, or insect activity. Grain patterns and coloration were consistent with original construction materials, and no structural irregularities or distress indicators were present. The wood condition was considered sound and free of defects at the time of inspection.

9.7 Moisture meter testing

We used a Delmhorst J-lite moisture meter with long accessory probe to test the moisture content of the plywood deck and/ or joists. We obtained readings of 9%-11%, which is generally considered to be in the normal range. This test should be repeated on future inspections to compare moisture content of the wood framing.

9.7 Inspector using meter to measure the moisture content of concealed wood framing components

9.8 Probing

We use a blunted steel tool and poked the exposed wood with medium force at areas

various areas. This is done to test for moisture and/ or termite damaged wood. Unless noted otherwise, no damage or anomalous conditions were observed.

9.8 Inspector probing exposed wooden components for defects

9.9 Sealed holes

After testing and viewing the previously concealed framing components, we sealed all holes with tight fitting plugs. The owner can paint these plugs to match the exterior wall color, if desired.

9.9 Tight fitting plugs were installed to repair all locations where holes were drilled.

10. Vertical measurements; to be used for future monitoring

10.0 An important feature of our inspection methodology is utilizing a high precision altimeter to take vertical measurements between a reference point and some structural member of the E3's that we are examining. This test can be repeated on future inspections as a method of determining if the structural/ wood framing members remain constant or have settled. These measurements should be the same when performed in the future. If the measurements differ greatly in the future, this may indicate structural settlement.


(1) We measured between a reference point and the center/ underside of the soffit serving unit 20 balcony. The reference point we used was on top of the curb that protects the building from vehicle impacts (at spot 14). The curb was chosen as our reference point because we believe it's unlikely to move over time. We obtained a measurement of 91-3/4".

10.0 Location of the reference point used for our vertical measurement.

10.0 High precision altimeter set to zero at our reference point.

10.0 "Measured to" location we selected.

10.0 Precise vertical measurement between the "reference point" and "measured to" location.

(2)

We measured between a reference point and the center/ underside of the soffit serving unit 39 balcony. The reference point we used was the top of the nearby hose spigot. The hose spigot was chosen as our reference point because we believe it's unlikely to move over time. We obtained a measurement of 71-3/4".

10.0 Location of the reference point used for our vertical measurement.

10.0 "Measured to" location we selected.

10.0 Precise vertical measurement between the "reference point" and "measured to" location.

11. Report Summary

The exterior elevated elements (E3) that we inspected, and their associated waterproofing elements, are in a generally safe condition, in adequate working order, and are free from any hazardous condition caused by fungus, deterioration, decay or improper alteration.

Assuming proper/ proactive maintenance"including routine cleaning, prompt repair of minor damage, and periodic resealing of waterproofing systems"we expect adequate performance of these E3 and project the service life to be approximately 7+ years. Maintenance should not be assumed or tabled for later; it is the single most important factor affecting the long-term performance and durability of these elements. We are currently not recommending further inspection or repairs for this E3 inspection cycle. The next E3 inspection is required to take place within 6 years (from the date of this inspection)..

Disclaimer: It is important for the end user of this report to understand the inherent limitations involved in conducting field inspections of exterior elevated elements (E3). Some components are not visible or verifiable, even with invasive inspection. For example, we can never confirm the number, size, or placement of fasteners inside concealed framing, even when inspection holes are made. Similarly, the original construction drawings and engineering details for this property were not provided, which further restricts the ability to fully evaluate original design, materials, or construction practices.

The practice of performing borescope investigations is also difficult in and of itself. It is usually very easy to identify lumber that is perfectly clean, and equally straightforward to identify lumber that is completely deteriorated. However, the middle range where only small stains, minor discoloration, or subtle imperfections are present can be far more challenging to assess with certainty.

Where invasive inspection is necessary, access is inherently restricted. Only a limited number of openings can be made in stucco, siding, or other finishes. Unlimited exploratory openings are neither practical nor advisable, as they can compromise the structureýs weather-resistive barrier and leave behind visible patches that negatively affect the buildingýs appearance. Our inspection approach balances the need for representative observation with the necessity of preserving both the structural envelope and the visual presentation of the property.

This report should not be construed as a guarantee or warranty of future performance, nor is it a substitute for corrective action, ongoing maintenance, or professional repair by qualified contractors. The property owner remains responsible for implementing and maintaining safe and code-compliant exterior elevated elements.

Despite all of the disclaimers noted above, we believe our inspection methodology is reliable, thorough, and appropriate under the circumstances, provides a level of confidence sufficient to support responsible decision-making by the property owner, and meets all requirements set forth in the California Health & Safety Code §§ 17973.

12. Qualifications of Inspector and Report Summary

Joseph Romeo and San Diego Home Inspection, Inc., hereby attest to holding an active "B Classification" General Contractor's License (#1113143) in good standing and 14+ years total with said B license. This exceeds the 5 years experience requirement mentioned in the statute. In other words, we attest to being fully qualified to perform this inspection.

Our inspection was conducted in a professional manner with commitment to excellence. As far as we know, this report is not required to be submitted to the local authority having jurisdiction. Keep the report on file until which time it is requested.

Respectfully submitted (October 22nd 2025),

12.0 Qualifications